## Formation of Metallacyclic C<sub>60</sub> Derivatives via Gas-Phase Ion-Molecule Reactions

Steven Z. Kan, Yong G. Byun, and Ben S. Freiser\*

## Herbert C. Brown Laboratory of Chemistry Purdue University, West Lafayette, Indiana 47907 Received August 22, 1994

Since their discovery in 1985,<sup>1</sup> fullerenes have drawn much attention. In 1990, Kratschmer and Huffman<sup>2</sup> developed a method that made it possible to produce  $C_{60}$  and  $C_{70}$  in macroscopic quantities. Since then, the research on fullerene chemistry has boomed.<sup>3-5</sup> In particular, a large effort has been focused on the production of fullerene derivatives through reactions involving carbon-carbon bond formation. Several routes have been taken to synthesize these derivatives including reacting C<sub>60</sub> with carbon radicals, nucleophilic reagents, and electrophilic reagents. These have led to the formation of carbon bridges and cycloadditions with fullerenes.<sup>3</sup> In particular,  $C_{60}$ derivatives of benzene and naphthalene have been synthesized.<sup>6,7</sup> Organometallic complexes containing C60 ligands have also been prepared and characterized.<sup>8</sup>

Paralleling these studies in the condensed phase are gas-phase studies. Although some ionic fullerene derivatives such as  $C_{60}(NCC_2H_5)_{1-3}^{2+,9,10} C_{60}NO_2^{-,11}$  exohedrally bound  $MC_{60}^+$ (M = Fe, Co, Ni, Cu, Rh, La, and VO)<sup>12,13</sup> and endohedral  $M@C_{60}^+$  (M = He, Ne, Y)<sup>14-18</sup> have been prepared in the gas phase, only a few examples have been reported on the production of gas-phase C<sub>60</sub> derivatives formed through C-C bonds.<sup>19-21</sup> We have previously demonstrated that metalated and unmetalated buckminsterfullerene methylene derivatives,  $CoC_{60}(CH_2)_{1-5}^+$  and  $C_{60}(CH_2)_{1-3}^+$ , respectively, can be prepared from  $CoC_{60}^{+,22}$  In this paper, we report the gas-phase reactions of  $C_{60}$  with Fe(benzyne)<sup>+</sup> and Fe(biphenylene)<sup>+</sup> in which metallacyclic  $C_{60}$  derivatives are formed.

All experiments were performed on an Extrel FTMS-2000 dual cell Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with a 3 T superconducting

- (1) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
- (2) Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.
  - (3) Taylor, R.; Walton, D. R. M. Nature 1993, 363, 685.
  - (4) Hirsch, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1138.

- (8) Fagan, P. J.; Calabrese, J. C.; Malone, B. Acc. Chem. Res. 1992, 25, 13À.
- (9) Petrie, S.; Javahery, G.; Bohme, D. K. J. Am. Chem. Soc. 1993, 115, 1445.
- (10) Javahery, G.; Petrie, S.; Wang, J.; Wincel, H.; Bohme, D. K. J. Am. Chem. Soc. 1993, 115, 9701.
- (11) Sunderlin, L. S.; Paulino, J. A.; Chow, J.; Kahr, B.; Ben-Amotz, D.; Squires, R. R. J. Am. Chem. Soc. 1991, 113, 5489.
- (12) Roth, L. M.; Huang, Y.; Schwedler, J. T.; Cassady, C. J.; Ben-
- Amotz, D.; Kahr, B.; Freiser, B. S. J. Am. Chem. Soc. 1991, 113, 6298.
   (13) Huang, Y.; Freiser, B. S. J. Am. Chem. Soc. 1991, 113, 9418.
   (14) Weiske, T.; Bohme, D. K.; Hrusak, J.; Kratschmer, W.; Schwarz,
- H. Angew. Chem., Int. Ed. Engl. 1991, 30, 884. (15) Weiske, T.; Bohme, D. K.; Schwarz, H. J. Phys. Chem. 1991, 95,
- 8451.
- (16) Caldwell, K. A.; Giblin, D. E.; Hsu, C. S.; Cox, D.; Gross, M. L.
  J. Am. Chem. Soc. 1991, 113, 8519.
  (17) Ross, M. M.; Callahan, J. H. J. Phys. Chem. 1991, 95, 5720.
- (18) Smalley, R. E. Acc. Chem. Res. 1992, 25, 98.
   (19) (a) Wang, J.; Javahery, G.; Petrie, S.; Bohme, D. K. J. Am. Chem. Soc. 1992, 114, 9665. (b) Becker, H.; Javahery, G.; Petrie, S.; Bohme, D. K. J. Phys. Chem. 1994, 98, 5591
- (20) McEwen, C. N.; McKay, R. G.; Larsen, B. S. J. Am. Chem. Soc. 1992, 114, 4413.
- (21) Srinivas, R.; Vairamani, M.; Mathews, C. K. J. Am. Soc. Mass. Spectrom. 1993, 4, 894.
- (22) Kan, S. Z.; Byun, Y. G.; Freiser, B. S. J. Am. Chem. Soc. 1994, 116, 8815.

magnet.<sup>23</sup> The ion-trapping potential was set at 2 V. A Bayard-Alpert ion gauge was used to monitor pressure. Fe<sup>+</sup> was generated by laser desorption of the pure iron metal target using a Quanta-Ray Nd:YAG laser operated at its fundamental output (1064 nm).<sup>24</sup>  $C_{60}$  was introduced into the source side of the dual cell using a solids probe at 350 °C. The temperature of the trapping cell was kept at 200 °C to maintain a static background  $C_{60}$  pressure at  ${\sim}1.0~{\times}~10^{-8}$  Torr. At this temperature, the observation of a slow reaction suggests that the process is near thermoneutral or somewhat endothermic. Chlorobenzene was introduced using a Varian leak valve into the vacuum system at a static pressure of 7.9  $\times$  10<sup>-7</sup> Torr measured using standard procedures for calibrating the ion gauge for the sensitivity toward the neutral molecule.<sup>25</sup> Background argon pressure at  $\sim 5.0 \times 10^{-6}$  Torr was used as the collision gas for thermalization and for collision-induced dissociation<sup>26</sup> (CID) experiments. Since a large percentage of the Fe<sup>+</sup> generated by laser desorption underwent a charge transfer reaction with background  $C_{60}$  to form  $C_{60}^+$ , a solenoid pulsed valve<sup>27</sup> was also used to introduce additional chlorobenzene to a maximum pressure of  $\sim 10^{-5}$  Torr to enhance ion intensities of  $Fe(C_6H_4)_{1,2}^+$ . Standard FT-ICR ion ejection techniques<sup>28</sup> and SWIFT excitation<sup>29</sup> were used to study ion-molecule reaction pathways and to isolate ions for CID experiments.<sup>23</sup>

 $Fe(benzyne)^+$  (1) and  $Fe(biphenylene)^+$  (2) were prepared in situ in the FT-ICR trapping cell via the well-characterized reactions 1 and 2.30-32 These two ions react with background

$$Fe^{+} + C_{6}H_{5}Cl \longrightarrow FeC_{6}H_{4}^{+} + HCl$$
(1)  
FeC\_{6}H\_{4}^{+} + C\_{6}H\_{5}Cl \longrightarrow Fe(C\_{6}H\_{4})\_{2}^{+} + HCl (2)

 $C_{60}$  to form  $FeC_{60}C_6H_4^+$  and  $FeC_{60}(C_6H_4)_2^+$ , respectively, reaction 3.  $FeC_6H_4^+$  also undergoes a charge transfer with  $C_{60}$ , reaction 4, to form  $C_{60}^+$ . The reaction is slow, however, suggesting that it is near thermoneutral or even slightly endothermic.  $FeC_{60}C_6H_4^+$  and  $FeC_{60}(C_6H_4)_2^+$  react to completion with  $C_6H_5Cl$  to form unmetalated  $C_{60}C_6H_4^+$  and  $C_{60}$ - $(C_6H_4)_2^+$ , respectively, reaction 5. While  $FeC_{60}(C_6H_4)_2^+$  is unreactive with background  $C_{60}$ ,  $FeC_{60}C_6H_4^+$  reacts to form  $C_{60}^ FeC_{60}C_6H_4^+$ , reaction 6.

$$Fe(C_6H_4)_n^+ + C_{60} \xrightarrow{n=1,2} C_{60}Fe(C_6H_4)_n^+$$
(3)

$$\frac{n=1}{C_{60}^{+}} + FeC_{6}H_{4}$$
(4)

 $FeC_{\kappa h}(C_6H_4)_n^+ + C_6H_5Cl \xrightarrow{n=1,2} C_{60}(C_6H_4)_n^+ + C_6H_5FeCl$ (5)

$$FeC_{60}C_6H_4^+ + C_{60} \longrightarrow C_{60}FeC_{60}C_6H_4^+$$
 (6)

Pseudo-first-order rate kinetics were observed for reaction 5 for both  $FeC_{60}C_6H_4^+$  (see Figure 1) and  $FeC_{60}(C_6H_4)_2^+$ , 33 indicating, but not unequivocally, that each ion population is thermalized and consists of only one isomeric structure. The

- (23) Freiser, B. S. Chemtracts: Anal. Phys. Chem. 1989, 1, 65. (24) Burnier, R. C.; Byrd, G. D.; Freiser, B. S. J. Am. Chem. Soc. 1981,
- 103, 4360.
- (25) Bartmess, J. E.; Georgiadis, R. M. Vacuum 1983, 33, 149.
- (26) Cody, R. B.; Burnier, R. C.; Freiser, B. S. Anal. Chem. 1982, 54, 96
- . (27) Carlin, T. J.; Freiser, B. S. Anal. Chem. **1983**, 55, 571. (28) Comisarow, M. B.; Grassi, V.; Parisod, G. Chem. Phys. Lett. **1978**,
- 57. 413.
- (29) Wang, T. C. L.; Ricca, T. L.; Marshall, A. G. Anal. Chem. 1986, 58, 2935
- (30) Dietz, T. G.; Chatellier, D. S.; Ridge, D. P. J. Am. Chem. Soc. 1978, 100. 4905.
- (31) Bjarnason, A.; Taylor, J. W. Organometallics 1989, 8, 2020.
  (32) Huang, Y.; Freiser, B. S. J. Am. Chem. Soc. 1989, 111, 2387.
  (33) Kan, S. Z.; Byun, Y. G.; Freiser, B. S. J. Mass Spectrom., in press.

0002-7863/95/1517-1177\$09.00/0 © 1995 American Chemical Society



**Figure 1.** Intensity variation versus reaction time for FeC<sub>60</sub>C<sub>6</sub>H<sub>4</sub><sup>+</sup> reacting with C<sub>6</sub>H<sub>5</sub>Cl and C<sub>60</sub>. Pressure of C<sub>6</sub>H<sub>5</sub>Cl = 7.9 ± 10<sup>-7</sup> Torr; pressure of C<sub>60</sub> = ~1.0 ± 10<sup>-8</sup> Torr.

reactions were found to be relatively slow ( $k \sim 10^{-11}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>). Upon CID, FeC<sub>60</sub>C<sub>6</sub>H<sub>4</sub><sup>+</sup> yields both C<sub>60</sub>C<sub>6</sub>H<sub>4</sub><sup>+</sup> and FeC<sub>6</sub>H<sub>4</sub><sup>+</sup>, reactions 7 and 8, which seemingly rules out structures 3 and 4. Reaction 8 implies that IP(FeC<sub>6</sub>H<sub>4</sub>) < IP-(C<sub>60</sub>) = 7.61 eV,<sup>34</sup> which supports the earlier proposition that reaction 4 proceeds slowly since it is somewhat endothermic. CID of 3 is expected to cleave the weak Fe<sup>+</sup>-benzene bond to form C<sub>60</sub>C<sub>6</sub>H<sub>4</sub><sup>+</sup> or Fe<sup>+</sup>. This structure could conceivably yield

$$FeC_{60}(C_{6}H_{4})^{+} \xrightarrow{CID / Ar} C_{60}(C_{6}H_{4})^{+} + Fe$$
(7)  
$$Fe(C_{6}H_{4})^{+} + C_{60}$$
(8)

FeC<sub>6</sub>H<sub>4</sub><sup>+</sup>, but it certainly would not be dominant. In addition, C<sub>60</sub>C<sub>6</sub>H<sub>4</sub><sup>+</sup> does not fragment under the same conditions. Similarly, upon CID, **4** is expected to lose only C<sub>60</sub> since the bond energy  $D^{\circ}(Fe^+-benzyne) = 76 \pm 10 \text{ kcal/mol}^{32}$  is far greater than  $D^{\circ}(Fe^+-C_{60}) < D^{\circ}(Fe^+-benzene) = 51.1 \text{ kcal/}$ mol,<sup>35</sup> vide infra. Furthermore, reaction 6 of FeC<sub>60</sub>C<sub>6</sub>H<sub>4</sub><sup>+</sup> with C<sub>60</sub> to form C<sub>60</sub>FeC<sub>60</sub>C<sub>6</sub>H<sub>4</sub><sup>+</sup> also rules out structure **4** since the metal center is not accessible to attach another C<sub>60</sub> ligand. Instead, structure **5** is the most likely structure of FeC<sub>60</sub>C<sub>6</sub>H<sub>4</sub><sup>+</sup> to yield both FeC<sub>6</sub>H<sub>4</sub><sup>+</sup> and C<sub>60</sub>C<sub>6</sub>H<sub>4</sub><sup>+</sup> upon CID. Consistent with the demetalation reaction observed for **2** with C<sub>6</sub>H<sub>5</sub>Cl,<sup>30-32</sup> **5** has a similar structural moiety and undergoes the analogous demetalation reaction 5. Note that while a mixture of **3** and **4** could explain the CID results, it is very unlikely that each would exhibit the same rate constant for reaction 5.



It has been established that there is substantial double-bond localization in the C<sub>60</sub> molecule.<sup>36,37</sup> As a result of this, C<sub>60</sub> in many cases behaves like an alkene rather than an aromatic hydrocarbon. The 6,6 ring junction is the reaction site in many addition reactions.<sup>4–6,38,39</sup> This is also true for many characterized organometallic complexes in which C<sub>60</sub> acts like an  $\eta^2$  ligand.<sup>6</sup> Likewise, a study of the reaction of C<sub>60</sub><sup>+</sup> with Fe-(CO)<sub>5</sub> revealed that C<sub>60</sub> acts as a two-electron donor in gasphase organometallic ions.<sup>40</sup> Furthermore, ligand displacement





reactions indicate that  $D^{\circ}(M^+-alkene) < D^{\circ}(M^+-C_{60}) < D^{\circ}(M^+-benzene)$  for M = Fe, Co.<sup>22</sup> This is consistent with either of two interpretations:  $C_{60}$  behaves like a highly polarizable alkene, and  $C_{60}$  behaves like an electron-deficient arene.<sup>8</sup> Formation of **5**, however, is consistent with the alkene property of  $C_{60}$ . As shown in Scheme 1, a commonly observed reaction of metallobenzynes in condensed phases is olefin coupling to form metallacyclic complexes,  $6.^{41-43}$  Similarly, in the gas phase the 6,6 junction double bond couples with one of the Fe-C bonds in FeC<sub>6</sub>H<sub>4</sub><sup>+</sup> to form **5**, Scheme 2.

Upon CID,  $FeC_{60}(C_6H_4)_2^+$  yields  $Fe(C_6H_4)_2^+$ , predominantly, with a minor amount of  $C_{60}(C_6H_4)_2^+$ . In analogy to **5** and Fe- $(C_6H_4)_3^+$  in the Fe<sup>+</sup>/C<sub>6</sub>H<sub>5</sub>Cl system,<sup>30-32</sup> FeC<sub>60</sub>(C<sub>6</sub>H<sub>4</sub>)<sub>2</sub><sup>+</sup> is proposed to have structure **7**, which undergoes demetalation (reaction 5) with chlorobenzene, as do **5** and Fe(C<sub>6</sub>H<sub>4</sub>)<sub>3</sub><sup>+</sup>. These results, together with the pseudo-first-order decay kinetics observed for reaction 5, reasonably eliminate the presence of other isomers. Again, the formation of **7** is consistent with the alkene-like property of C<sub>60</sub> resulting in coupling to Fe(C<sub>6</sub>H<sub>4</sub>)<sub>2</sub><sup>+</sup>, Scheme 3.

In addition, as stated above,  $FeC_{60}C_6H_4^+$  undergoes a second addition of a  $C_{60}$  molecule (reaction 6), but  $FeC_{60}(C_6H_4)_2^+$  does not, even though the Fe centers presumably have similar coordination in both structures. We propose that this is due to the steric differences in the two structures, which is consistent with 5 and 7.

Metal complexes of benzynes, cycloalkynes, and acyclic alkynes have the common property that they can couple with  $\pi$ bonds such as C=C, C=C, C=O in CO<sub>2</sub>, CO, and R<sub>1</sub>(CO)R<sub>2</sub>, C=N, and N=N.<sup>41-43</sup> They have been used extensively in the condensed phase for the preparation of various organometallic complexes. C<sub>60</sub> acts like an alkene, but, to our knowledge, its reactivity toward metal-benzynes has not yet been studied. This gas-phase example, in which we have demonstrated that a reactive metal-benzyne structure can couple with C<sub>60</sub> to form metallacyclic C<sub>60</sub> C-C-bound complexes, suggests that it will be possible to produce this, as yet unknown, class of metallo-C<sub>60</sub> derivatives in condensed-phase syntheses.

Acknowledgment is made to the Division of Chemical Sciences in the United States Department of Energy (DE-FG02-87ER13766) for supporting this work.

## JA942800D

- (38) Fagan, P. J.; Calabrese, J. C.; Malone, B. Science 1991, 252, 1160.
  (39) Fagan, P. J.; Calabrese, J. C.; Malone, B. J. Am. Chem. Soc. 1991, 113, 9408.
- (40) Jiao, Q.; Huang, Y.; Lee, S. A.; Gord, J. R.; Freiser, B. S. J. Am. Chem. Soc. 1992, 114, 2726.
- (41) Buchwald, S. L.; Nielscn, R. B. Chem. Rev. 1988, 88, 1047. (42) Bennett, M. A.; Schwemlein, H. P. Angew. Chem., Int. Ed. Engl.
- 1989, 28, 1296. (43) Buchwald, S. L.; Campora, J. Organometallics 1993, 12, 4182.

<sup>(34)</sup> Zimmerman, J. A.; Eyler, J. R.; Bach, S. B. H.; McElvaney, S. W. J. Chem. Phys. 1991, 94, 3556.

<sup>(35)</sup> Bauschlicher, C. W.; Partridge, H.; Langhoff, S. R. J. Chem. Phys. **1992**, 96, 3273.
(26) Varnoni C. S.; Parting D. D. Bathur, D. S. M. H.

<sup>(36)</sup> Yannoni, C. S.; Bernier, P. P.; Bethune, D. S.; Meijer, G.; Salem, J. R. J. Am. Chem. Soc. **1991**, 113, 3190.

<sup>(37)</sup> Feng, J.; Li, J.; Wang, A.; Zerner, M. C. Int. J. Quantum Chem. 1990, 37.